Intellect-Partners

Categories
Computer Science

Enhancing AI Accelerators with HBM3: Overcoming Memory Bottlenecks in the Age of Artificial Intelligence

High Bandwidth Memory 3 (HBM3): Overcoming Memory Bottlenecks in AI Accelerators

With the rise of generative AI models that can produce original text, picture, video, and audio material, artificial intelligence (AI) has made major strides in recent years. These models, like large language models (LLMs), were trained on enormous quantities of data and need a lot of processing power to function properly. However, because of their high cost and processing requirements, AI accelerators now require more effective memory solutions. High Bandwidth Memory, a memory standard that has various benefits over earlier memory technologies, is one such approach.        

How HBM is relevant to AI accelerators?

Constant memory constraints have grown problematic in a number of fields over the past few decades, including embedded technology, artificial intelligence, and the quick growth of generative AI. Since external memory interfaces have such a high demand for bandwidth, several programs have had trouble keeping up. An ASIC (application-specific integrated circuit) often connects with external memory, frequently DDR memory, through a printed circuit board with constrained interface capabilities. The interface with four channels only offers about 60 MB/s of bandwidth even with DDR4 memory. While DDR5 memory has improved in this area, the improvement in bandwidth is still just marginal and cannot keep up with the continuously expanding application needs.

However, a shorter link, more channels, and higher memory bandwidth become practical when we take the possibility of high memory bandwidth solutions into account. This makes it possible to have more stacks on each PCB, which would greatly enhance bandwidth. Significant advancements in high memory bandwidth have been made to suit the demands of many applications, notably those demanding complex AI and machine learning models.

The latest generation of High Bandwidth Memory

The most recent high bandwidth memory standard is HBM3, which is a memory specification for 3D stacked SDRAM that was made available by JEDEC in January 2022. With support for greater densities, faster operation, more banks, enhanced reliability, availability, and serviceability (RAS) features, a lower power interface, and a redesigned clocking architecture, it provides substantial advancements over the previous HBM2E standard (JESD235D). 

General Overview of DRAM Die Stack with Channels

[Source: HBM3 Standard [JEDEC JESD238A] Page 16 of 270]

P.S. You can refer to HBM3 Standard [JEDEC JESD238A]: https://www.jedec.org/sites/default/files/docs/JESD238A.pdf for further studies.   

How does HBM3 address memory bottlenecks in AI accelerators?

HBM3 is intended to offer great bandwidth while consuming little energy, making it perfect for AI tasks that need quick and effective data access. HBM3 has a number of significant enhancements over earlier memory standards, including:

Increased bandwidth

Since HBM3 has a substantially larger bandwidth than its forerunners, data may be sent between the memory and the GPU or CPU more quickly. For AI tasks that require processing massive volumes of data in real time, this additional bandwidth is essential.

Lower power consumption

Since HBM3 is intended to be more power-efficient than earlier memory technologies, it will enable AI accelerators to use less energy overall. This is crucial because it may result in considerable cost savings and environmental advantages for data centers that host large-scale AI hardware.

Higher memory capacity

Greater memory capacities supported by HBM3 enable AI accelerators to store and analyze more data concurrently. This is crucial for difficult AI jobs that need access to a lot of data, such as computer vision or natural language processing.

Improved thermal performance

AI accelerators are less likely to overheat because to elements in the architecture of HBM3 that aid in heat dissipation. Particularly during demanding AI workloads, this is essential for preserving the system’s performance and dependability.

Compatibility with existing systems

Manufacturers of AI accelerators will find it simpler to implement the new technology because HBM3 is designed to be backward-compatible with earlier HBM iterations without making substantial changes to their current systems. This guarantees an easy switch to HBM3 and makes it possible for quicker integration into the AI ecosystem.

In a word, HBM3 offers enhanced bandwidth, reduced power consumption, better memory capacity, improved thermal performance, and compatibility with current systems, making it a suitable memory choice for AI accelerators. HBM3 will play a significant role in overcoming memory constraints and allowing more effective and potent AI systems as AI workloads continue to increase in complexity and size.

Intellectual property trends for HBM3 in AI Accelerators

HBM3 in AI Accelerators is witnessing rapid growth in patent filing trends across the globe. Over the past few years, the number of patent applications almost getting doubled every two years.    

MICRON is a dominant player in the market with 50% patents. It now holds twice as many patents as Samsung and SK Hynix combined. Performance, capacity, and power efficiency in today’s AI data centers are three areas where Micron’s HBM3 Gen2 “breaks new records.” It is obvious that the goal is to enable faster infrastructure utilization for AI inference, lower training periods for big language models like GPT-4, and better total cost of ownership (TCO).       

Other key players who have filed for patents in High bandwidth memory technology with are Intel, Qualcomm, Fujitsu etc.   

key players who have filed for patents in High bandwidth memory

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]  

Following are the trends of publication and their legal status over time:

Legal status for patent applications and documents

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]

These Top companies own around 60% of total patents related to UFS. The below diagram shows these companies have built strong IPMoats in US jurisdiction.  

IPMoats in US jurisdiction

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]

Conclusion

In summary, compared to earlier memory standards, HBM3 provides larger storage capacity, better bandwidth, reduced power consumption, and improved signal integrity. HBM3 is essential for overcoming memory limitations in the context of AI accelerators and allowing more effective and high-performance AI applications. HBM3 will probably become a typical component in the next AI accelerator designs as the need for AI and ML continues to rise, spurring even more improvements in AI technology.    

Meta Data

The performance of AI accelerators will be improved by the cutting-edge memory technology HBM3, which provides unparalleled data speed and efficiency.

Categories
Electronics

Understanding Hidden Markov Model in Natural Language – Decoding Amazon Alexa

Alexa is a cloud-based software program that acts as a voice-controlled virtual personal assistant. Alexa works by listening for voice commands, translating them into text, interpreting the text to carry out corresponding functions, and delivering results in the form of audio, video, or device/accessory triggers.

Hidden Markov Models (HMMs) are a type of probability model that can be used in Natural Language Understanding (NLU) to help programs come to the most likely decision based on both previous decisions and observations.

Machine learning plays a critical role in improving Alexa’s ability to understand and respond to voice commands over time.

Alexa has three main parts: Wake word, Invocation name, and Utterance. Here is a breakdown of each part:

  • Wake word: This is the word that users say to activate Alexa. By default, the wake word is “Alexa,” but users can change it to “Echo,” “Amazon,” or “Computer.
  • Invocation name: This is the unique name that identifies a custom skill. Users can invoke a custom skill by saying the wake word followed by the invocation name. The invocation name must not contain the wake words “Alexa,” “Amazon,” “Echo,” or the words “skill” or “app.
  • Utterance: This is the spoken phrase that users say to interact with Alexa. Users can include additional words around their utterances, and Alexa will try to understand the intent behind the words.
Natural Language Processing (NLP)

What is NLP?

Natural Language Processing (NLP) is a key component of Alexa’s functionality. NLP is a branch of computer science that involves the analysis of human language in speech and text. It is the technology that allows machines to understand and interact with human speech, but is not limited to voice interactions. NLP is the reader that takes the language created by Natural Language Generation (NLG) and consumes it. Advances in NLP technology have allowed dramatic growth in intelligent personal assistants such as Alexa.

Alexa uses NLP to process requests or commands through a machine learning technique. When a user speaks to Alexa, the audio is sent to Amazon’s servers to be analysed more efficiently. To convert the audio into text, Alexa analyses characteristics of the user’s speech such as frequency and pitch to give feature values. The Alexa Voice Service then processes the response and identifies the user’s intent, making a web service request to a third-party server if needed.

In summary, NLP is the technology that allows Alexa to understand and interact with human speech. It is used to process requests or commands through a machine learning technique, and NLU is a key component of Alexa’s functionality that allows it to infer what a user is asking for when they ask a question in a variety of ways.

Hidden Markov Model (NLU Example) 

Hidden Markov Model (NLU Example) 

HMMs are used in Alexa’s NLU to help understand the meaning behind the words spoken by the user. Here is an example of how HMMs can be used in Alexa’s NLU:

  1. The user says “Alexa, play some music.”
  2. The audio is sent to Amazon’s servers to be analyzed more efficiently.
  3. The audio is converted into text using speech-to-text conversion.
  4. The text is analyzed using an HMM to determine the user’s intent. The HMM takes into account the previous decisions made by the user, such as previous music requests, as well as the current observation, which is the user’s request to play music.
  5. Alexa identifies the user’s intent as “play music” and performs the requested action.

Conclusion

In summary, Alexa’s NLP architecture involves converting the user’s spoken words into text, processing the text to identify the user’s intent, and performing complex operations such NLU using the Alexa Voice Service.

Categories
Computer Science

Recommendation Systems: Navigating the Digital Deluge for Personalized Experiences

In today’s digital age, we are constantly blasted with an overwhelming amount of information, products, and services. Recommendation systems have emerged as an invaluable tool to help us navigate through this vast sea of choices. Whether we are browsing an e-commerce website, streaming our favorite shows, or discovering new music, recommendation systems play a pivotal role in enhancing our online experiences. In this blog post, we will explore what recommendation systems are, how they work, and the underlying algorithms that power them.

What are Recommendation Systems?

A Recommender system predicts whether a particular user would prefer an item or not based on the user’s profile and user’s information. These systems aim to overcome information overload and provide personalized recommendations to a particular user.

The term recommender system provides personalized suggestions as a result and it affects the user in an individualized way to Favourable items from the large number of opinions. Recommendation systems are becoming increasingly important in today’s extremely busy world. People are always short on time with the myriad tasks they need to accomplish in the limited 24 hours. Therefore, the recommendation systems are important as they help them make the right choices, without having to expend their cognitive resources.

Understanding the Recommendation Algorithms:

Recommendation Algorithms: Recommendation algorithms are at the core of any recommendation system. There are several types of algorithms used, including.

  • Content-Based Filtering: Content-based filtering recommends items similar to those a user has liked or interacted with in the past. It analyses item attributes and user profiles to identify patterns and make recommendations based on similarity.
  • Collaborative Filtering: Collaborative filtering utilizes user behavior and preferences to recommend items. It looks for patterns and relationships between users with similar tastes and suggests items based on what similar users have liked or purchased.
  • Hybrid Approaches: Hybrid approaches combine multiple algorithms to leverage the strengths of both content-based and collaborative filtering. By using hybrid models, recommendation systems can provide more accurate and diverse recommendations.
  • Matrix Factorization: Matrix factorization techniques, such as Singular Value Decomposition (SVD) and Non-Negative Matrix Factorization (NMF), decompose the user-item interaction matrix into lower-dimensional matrices. These techniques capture latent factors or features that represent user preferences and item characteristics. By reconstructing the original matrix, the algorithm can predict the missing ratings or recommend items based on the inferred latent factors.
  • Association Rules: Association rule-based algorithms discover relationships and associations between items based on the co-occurrence of items in user transactions. The algorithm identifies frequently occurring item sets and generates recommendations based on these associations. For example, if many users who purchase diapers also buy baby food, the algorithm may suggest baby food to users who have bought diapers.

Conclusion:

Recommendation systems have revolutionized the way we discover and engage with content, products, and services online. By harnessing the power of data and advanced algorithms, these systems provide tailored recommendations, enhancing user experiences and driving engagement. As technology advances, recommendation systems will continue to evolve, becoming even more accurate, personalized, and indispensable in our digital lives.

Remember, the next time you stumble upon a perfectly curated playlist or discover a book that seems tailor-made for you, you have recommendation systems.