Intellect-Partners

Categories
Computer Science

Unlocking Blockchain: Unveiling the Patent Landscape of Decentralized Innovation

Introduction:

Blockchain is a revolutionary invention that is transforming businesses and changing how we think about value exchange in the ever-evolving digital ecosystem. With the ability to secure financial transactions and promote supply chain transparency, decentralized ledger technology has enormous promise. Come us on a voyage where we’ll delve in`to the significance, the implications for intellectual property, and developing trends of blockchain technology.

Decoding Core technology and Principles

Blockchain technology is an innovative approach to digital transaction management and recordkeeping. It is predicated on the idea of a distributed database kept up to date by a computer network, known as a decentralised ledger. This implies that the ledger is not under the control of a single, central authority, making it extremely safe and impenetrable.

At the foundation of a blockchain are units of data called Blocks. A record of all transactions and a special code known as a hash are included in every block. To link blocks together and guarantee that the ledger is unchangeable, utilise the hash, which is a cryptographic fingerprint of the block.

A mathematical function known as a hash function is used to construct Hashes. This function accepts a chunk of data as input and outputs a distinct value known as a hash. No matter how long the input data is, the hash is always the same length. Because of this feature, hashes are incredibly helpful for safeguarding blockchain ledgers.

By the way of example: Let’s imagine a business that tracks the delivery of its goods using blockchain technology. A new block is added to the blockchain whenever a product is sent. The block includes details on the package, including the tracking number, origin, and destination. The new block also contains the hash from the preceding block. As a result, a blockchain, or chain of blocks, is created. The blockchain cannot be tampered as the hashes are distinct and unforgeable. The hash of a block will no longer match the hash of the previous block if someone tries to alter the data in that block and the block will be refused as a result of alerting the network to the manipulation.
Blockchain is a sophisticated technology that has a wide range of possible uses. Though it’s still in the early stages of development, it might completely change how we interact with digital information.

The core principles are:

Decentralization: Blockchain works by utilizing a peer-to-peer network to do away with middlemen and create a trustless environment in which users authenticate and record transactions together.
Cryptography: Blockchain guarantees the security and integrity of data recorded on the distributed ledger by utilizing cutting-edge cryptographic algorithms. Cryptography protects transactions against unauthorized changes or tampering by ensuring their authenticity and immutability.
Smart Contracts: Smart contracts, sometimes referred to as self-executing contracts, automate and enforce pre-established rules inside the blockchain network. These self-activating contracts improve productivity across a range of applications, simplify procedures, and increase transparency.

Unveiling the Inner Workings of Blockchain

Unveiling the Inner Workings of Blockchain

Delving into the intricacies of blockchain technology necessitates a thorough understanding of its fundamental components:

Transaction Verification: The validation procedure is activated when a transaction is started, like sending bitcoin to another user. Network participants, or nodes, are involved in this process. Depending on the kind of blockchain (public or private), nodes can be either computers or people. These nodes carefully review the transaction to make sure it is legitimate and follows the rules of the blockchain.
Consensus Mechanisms: Consensus mechanisms are the cornerstone of blockchain operation. They are protocols created to promote agreement among all nodes in the network regarding the state of the blockchain at any given time. The proof-of-work (PoW) process is used in public blockchains like Bitcoin to reach this consensus. In order to be rewarded with Bitcoin and the ability to add a new block to the blockchain, miners compete to solve challenging mathematical riddles.
Immutable Integrity: The immutability of data on the blockchain ensures its permanence. A block’s contents are unchangeable once it is uploaded to the blockchain. Cryptographic hashing, a method that creates a distinct fingerprint for every block, protects this immutability. To change any of the data in a block, one would have to change the fingerprints of every block that came after it, which is not a computationally realistic process.

Advantages of Blockchain

  • The groundwork for cryptocurrencies, blockchain technology has proven to be a game-changer with uses that extend well beyond the financial sector. Its irrevocable and decentralised nature promises to change our interactions with digital assets and reshape industries, among many other benefits. The increased security of blockchain is one of its most enticing features. Blockchain disperses data over a network of linked computers, in contrast to conventional centralised systems, making it almost impervious to hackers and unauthorised changes. This strong security structure is especially helpful in protecting private data, such bank account details and health records.
  • Blockchain promotes traceability and transparency never seen before. Every transaction on the blockchain is documented in an unchangeable ledger that is available to all network users. Because of its transparency, a process can be followed and validated at every stage, which encourages responsibility and thwarts fraud. Decentralization structure of blockchain allows peer-to-peer transactions possible, which does away with the necessity for middlemen. It also lowers expenses, simplifies procedures, and gives people more authority over their assets and data.
  • The adaptability of blockchain goes beyond its technological capabilities. It encourages trust and cooperation amongst network users, which makes it possible for decentralized autonomous organizations (DAOs) to be established. These decentralized autonomous organizations (DAOs) function autonomously, relying on the agreement of its members to make decisions that are democratic and to create a feeling of shared ownership.


Navigating the Intellectual Property Landscape in the Blockchain Era

With the rapid development of blockchain technology, which has fundamentally altered how people see and use digital assets, a new era of innovation and transformation has begun. Equally rapidly advancing are the intellectual property (IP) concerns related to the development and application of this technology. This article examines the subtleties of managing the intellectual property (IP) environment in the blockchain age with an emphasis on significant trends, challenges, and opportunities.

Patent Trends in Blockchain Technology

Businesses are chasing patents on blockchain technology in an attempt to protect potentially revolutionary ideas. Blockchain technology has great promise for revolutionizing several industries, such as banking, healthcare, and supply chain management.


Decentralized Finance (DeFi)
The increasing interest in blockchain-based financial solutions is reflected in the remarkable growth of patent applications linked to decentralized finance (DeFi). DeFi protocols provide decentralized alternatives to centralized institutions with the goal of altering established financial systems. These developments include a wide range of DeFi topics, including as lending, borrowing, and trading protocols.

Interoperability
These days, innovations that improve blockchain interoperability are the main focus of patent applications. Interoperability is the capacity of many blockchain networks to easily exchange information and communicate with one another. This is necessary in order to facilitate cross-chain transactions and encourage widespread use of blockchain technology.

Blockchain Technology Patents: Crypto assets and Beyond

The graphs below show that for a number of years, there was an annual rise in the amount of patents filed for blockchain-related inventions, including crypto assets; however, activity has lately decreased due to various challenges in the field.

Patenting activity over the years

Patenting activity over the years (Source: insideglobaltech)


The main assignees of patent filings in the US and other nations in this field are shown in the charts below, respectively.

Major US Players in Blockchain patents

   Major US Players in Blockchain patents (Source: sagaciousresearch)

Top countries in blockchain patents in 2021

Top countries in blockchain patents in 2021 (Source: harrityllp)


Intellectual Property Challenges and Opportunities

While blockchain presents vast opportunities, navigating intellectual property challenges is crucial for sustainable innovation and growth. Key considerations include:


Open-Source Dynamics

A deliberate approach to intellectual property management is required because many blockchain initiatives are open source. When working in open-source settings, participants frequently share intellectual property rights, necessitating a delicate balance between invention protection and teamwork.

Patent Quality

To promote innovation and avoid overly broad claims, it is essential to ensure the quality of patents pertaining to blockchain technology. Patents that are too broad can stifle future innovation by limiting access to vital technology. The assessment of patent quality and its conformity to technological progress principles is largely dependent on the involvement of patent offices and industry specialists.


Current Trends and Future Trajectories

The versatility of blockchain technology is evident in its widespread adoption across various industries:


Supply Chain Management

Supply chain management is being revolutionized by blockchain technology, which improves transparency and traceability. Blockchain gives businesses the ability to follow the movement of commodities from point of origin to point of destination with an unprecedented level of precision and transparency by generating an unchangeable record of transactions. Improved traceability guarantees product legitimacy, keeps fake goods out of the market, and makes inventory management easier.

Healthcare

Blockchain is revolutionizing the healthcare sector by enhancing patient record accessibility, security, and data integrity. The tamper-proof and secure nature of blockchain guarantees the protection of sensitive patient data while facilitating easy access to vital medical information for authorized healthcare practitioners.

Integration with Emerging Technologies

Blockchain synergizes with other cutting-edge technologies to create innovative solutions that address a wide range of challenges.

Internet of Things (IoT)

IoT devices may share data with one other in a transparent and safe manner when blockchain and IoT are combined. In a variety of applications, including smart cities, industrial automation, and precision agriculture, this may help with real-time data processing, predictive maintenance, and automated decision-making.

Artificial Intelligence (AI)

Exploring how blockchain and AI interact might greatly improve data security and privacy. In addition to preserving the integrity and safety of sensitive data, blockchain’s decentralized and unchangeable structure may support AI’s data-driven insights by allowing AI models to function safely and independently.

Conclusion

The rapid advancement of blockchain technology necessitates careful consideration of the complexities of intellectual property (IP) management. Companies and people need to be proactive in navigating the distinct intellectual property (IP) landscape that surrounds blockchain breakthroughs in order to guarantee that their innovative concepts and works of art are suitably safeguarded. Through an awareness of the intricacies surrounding intellectual property in the context of blockchain technology, interested parties may make the most of this revolutionary tool, all the while protecting their proprietary knowledge and promoting a robust innovation community.

Categories
Computer Science

Enhancing AI Accelerators with HBM3: Overcoming Memory Bottlenecks in the Age of Artificial Intelligence

High Bandwidth Memory 3 (HBM3): Overcoming Memory Bottlenecks in AI Accelerators

With the rise of generative AI models that can produce original text, picture, video, and audio material, artificial intelligence (AI) has made major strides in recent years. These models, like large language models (LLMs), were trained on enormous quantities of data and need a lot of processing power to function properly. However, because of their high cost and processing requirements, AI accelerators now require more effective memory solutions. High Bandwidth Memory, a memory standard that has various benefits over earlier memory technologies, is one such approach.        

How HBM is relevant to AI accelerators?

Constant memory constraints have grown problematic in a number of fields over the past few decades, including embedded technology, artificial intelligence, and the quick growth of generative AI. Since external memory interfaces have such a high demand for bandwidth, several programs have had trouble keeping up. An ASIC (application-specific integrated circuit) often connects with external memory, frequently DDR memory, through a printed circuit board with constrained interface capabilities. The interface with four channels only offers about 60 MB/s of bandwidth even with DDR4 memory. While DDR5 memory has improved in this area, the improvement in bandwidth is still just marginal and cannot keep up with the continuously expanding application needs.

However, a shorter link, more channels, and higher memory bandwidth become practical when we take the possibility of high memory bandwidth solutions into account. This makes it possible to have more stacks on each PCB, which would greatly enhance bandwidth. Significant advancements in high memory bandwidth have been made to suit the demands of many applications, notably those demanding complex AI and machine learning models.

The latest generation of High Bandwidth Memory

The most recent high bandwidth memory standard is HBM3, which is a memory specification for 3D stacked SDRAM that was made available by JEDEC in January 2022. With support for greater densities, faster operation, more banks, enhanced reliability, availability, and serviceability (RAS) features, a lower power interface, and a redesigned clocking architecture, it provides substantial advancements over the previous HBM2E standard (JESD235D). 

General Overview of DRAM Die Stack with Channels

[Source: HBM3 Standard [JEDEC JESD238A] Page 16 of 270]

P.S. You can refer to HBM3 Standard [JEDEC JESD238A]: https://www.jedec.org/sites/default/files/docs/JESD238A.pdf for further studies.   

How does HBM3 address memory bottlenecks in AI accelerators?

HBM3 is intended to offer great bandwidth while consuming little energy, making it perfect for AI tasks that need quick and effective data access. HBM3 has a number of significant enhancements over earlier memory standards, including:

Increased bandwidth

Since HBM3 has a substantially larger bandwidth than its forerunners, data may be sent between the memory and the GPU or CPU more quickly. For AI tasks that require processing massive volumes of data in real time, this additional bandwidth is essential.

Lower power consumption

Since HBM3 is intended to be more power-efficient than earlier memory technologies, it will enable AI accelerators to use less energy overall. This is crucial because it may result in considerable cost savings and environmental advantages for data centers that host large-scale AI hardware.

Higher memory capacity

Greater memory capacities supported by HBM3 enable AI accelerators to store and analyze more data concurrently. This is crucial for difficult AI jobs that need access to a lot of data, such as computer vision or natural language processing.

Improved thermal performance

AI accelerators are less likely to overheat because to elements in the architecture of HBM3 that aid in heat dissipation. Particularly during demanding AI workloads, this is essential for preserving the system’s performance and dependability.

Compatibility with existing systems

Manufacturers of AI accelerators will find it simpler to implement the new technology because HBM3 is designed to be backward-compatible with earlier HBM iterations without making substantial changes to their current systems. This guarantees an easy switch to HBM3 and makes it possible for quicker integration into the AI ecosystem.

In a word, HBM3 offers enhanced bandwidth, reduced power consumption, better memory capacity, improved thermal performance, and compatibility with current systems, making it a suitable memory choice for AI accelerators. HBM3 will play a significant role in overcoming memory constraints and allowing more effective and potent AI systems as AI workloads continue to increase in complexity and size.

Intellectual property trends for HBM3 in AI Accelerators

HBM3 in AI Accelerators is witnessing rapid growth in patent filing trends across the globe. Over the past few years, the number of patent applications almost getting doubled every two years.    

MICRON is a dominant player in the market with 50% patents. It now holds twice as many patents as Samsung and SK Hynix combined. Performance, capacity, and power efficiency in today’s AI data centers are three areas where Micron’s HBM3 Gen2 “breaks new records.” It is obvious that the goal is to enable faster infrastructure utilization for AI inference, lower training periods for big language models like GPT-4, and better total cost of ownership (TCO).       

Other key players who have filed for patents in High bandwidth memory technology with are Intel, Qualcomm, Fujitsu etc.   

key players who have filed for patents in High bandwidth memory

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]  

Following are the trends of publication and their legal status over time:

Legal status for patent applications and documents

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]

These Top companies own around 60% of total patents related to UFS. The below diagram shows these companies have built strong IPMoats in US jurisdiction.  

IPMoats in US jurisdiction

[Source: https://www.lens.org/lens/search/patent/list?q=stacked%20memory%20%2B%20artificial%20intelligence]

Conclusion

In summary, compared to earlier memory standards, HBM3 provides larger storage capacity, better bandwidth, reduced power consumption, and improved signal integrity. HBM3 is essential for overcoming memory limitations in the context of AI accelerators and allowing more effective and high-performance AI applications. HBM3 will probably become a typical component in the next AI accelerator designs as the need for AI and ML continues to rise, spurring even more improvements in AI technology.    

Meta Data

The performance of AI accelerators will be improved by the cutting-edge memory technology HBM3, which provides unparalleled data speed and efficiency.

Categories
Computer Science

High Bandwidth Memory (HBM3) Products | SK Hynix | Samsung | Nvidia and related IEEE Papers

High Bandwidth Memory (HBM3)

JEDEC has released HBM3 with the JESD238A standard. It offers multiple advantages over previous releases of HBM technology in terms of speed, latency, and computational capabilities. The HBM3 technology implements RAS architecture for reducing memory error rates.

Second Generation of HBM implements 2.4 Gb/s/pin with 307-346 GB/s. Further, HBM2E implements 5.0 Gb/s/pin with 640 Gb/s, and third Generation of HBM implements 8.0 Gb/s/pin with 1024 GB/s.

A table describing about comparison of HBM2, HBM2E, And HBM3:

We have tried collecting all available information on the internet related to the HBM3 memory system. The blog includes documents of different versions of standards, related products, and IEEE Papers from manufacturers.

Different HBM standards released by JEDEC

Multiple version of the HBM memory system and their links are:

HBM1: JESD235: (Oct 2013): https://www.jedec.org/sites/default/files/docs/JESD235.pdf 
HBM2: JESD235A: (Nov 2015): https://web.archive.org/web/20220514151205/https://composter.com.ua/documents/JESD235A.pdf
HBM2E: JESD235B: (Nov 2018): not available
HBM2 Update: JESD235C: (Jan 2020): not available
HBM1, HBM2: JESD235D: : (Feb 2021): https://www.jedec.org/sites/default/files/docs/JESD235D.pdf
HBM3: JESD238: (Jan 2022): not available
HBM3 update: JESD238A: (Jan 2023): https://www.jedec.org/sites/default/files/docs/JESD238A.pdf

HBM1: 

JEDEC released the first version of the HBM standard, named HBM1 (JESD235 standard), in October 2013, and its link is below:

https://www.jedec.org/sites/default/files/docs/JESD235.pdf

HBM2:

JEDEC released the second version of the HBM standard, named HBM2 (JESD235A standard), in November 2015, and its link is below:

https://web.archive.org/web/20220514151205/https://composter.com.ua/documents/JESD235A.pdf

Further, JEDEC released the third version of the HBM standard named HBM2E (JESD235B standard) in November 2018 and HBM2 Updation (JESD235C) in January 2020. The link is not available on the internet.

HBM3:

JEDEC released a new version of the HBM standard named HBM3 (JESD238A standard) on Jan 2023, and its link is

https://www.jedec.org/sites/default/files/docs/JESD238A.pdf

Multiple new Features introduced in HBM3 are:

New features introduced in HBM3 for increasing memory speed and reducing memory latency are:

  1. On-Die DRAM ECC Operation
  2. Automated on-die error scrubbing mechanism (Error Check and Scrub (ECS) operation)
  3. MBIST enhanced memory built-in self-test (MBIST)
  4. WDQS Interval Oscillator
  5. Duty Cycle Adjuster (DCA) | Duty Cycle Monitor (DCM)
  6. Self-Repair Mechanism


Different IEEE Papers from other manufacturers are available. Manufacturers are working on HBM3 memory standard JEDEC JESD238A for various memory operations. They are implementing a new mechanism introduced in the HBM3 standard.

Samsung and SK Hynix are significant manufacturers of HBM3 and have revealed many research papers stating or indicating their implementation of different features of HBM3. The paper describes how various implemented technical features are introduced in the HBM3 memory system.

Products implementing HBM3 technology:

Products implementing HBM3 technology

SAMSUNG HBM3 ICEBOLT:

The memory system stacks 12 stacks of DRAM memory systems for AI operations. It provides processing speeds up to 6.4Gbps and bandwidth that reaches 819GB/s.

SAMSUNG HBM3 ICEBOLT
Fig 1. Samsung HBM3 ICEBOLT variants

Link to this product: https://semiconductor.samsung.com/dram/hbm/hbm3-icebolt/

SKHYNIX HBM3 memory system:

SKhynix announces 12 layers of HBM3 with 24 GB memory capacity

Fig 2. SK Hynix HBM3 24 GB memory system

Link to this product: https://news.skhynix.com/sk-hynix-develops-industrys-first-12-layer-hbm3/

Nvidia Hopper H100 GPU implementing HBM3 memory system:

Nvidia Hopper H100 GPU implementing HBM3 memory system
Fig 3. Nvidia Hopper H100 GPU implementing HBM3 memory system

IEEE Papers from different Manufacturers exploring HBM3 technology

IEEE papers and their links from Samsung, SK Hynix, and Nvidia are mentioned. These papers are written authors from Samsung, SK Hynix, and Nvidia. The authors are exploring different technological aspects of the HBM3 memory system. The IEEE paper shows the architecture of the HBM memory system and various features:

Samsung IEEE paper related to HBM3:

Samsung has been working on HBM3 technology and has already released multiple products about it.

IEEE Paper1:

Title: A 4nm 1.15TB/s HBM3 Interface with Resistor-Tuned Offset-Calibration and In-Situ Margin-Detection
DOI10.1109/ISSCC42615.2023.10067736
Link: https://ieeexplore.ieee.org/document/10067736

IEEE Paper2:

Title: A 16 GB 1024 GB/s HBM3 DRAM with On-Die Error Control Scheme for Enhanced RAS Features
DOI10.1109/VLSITechnologyandCir46769.2022.9830391
Link: https://ieeexplore.ieee.org/document/9830391

IEEE Paper3:

Title: A 16 GB 1024 GB/s HBM3 DRAM With Source-Synchronized Bus Design and On-Die Error Control Scheme for Enhanced RAS Features
DOI10.1109/JSSC.2022.3232096
Link: https://ieeexplore.ieee.org/document/10005600

Samsung HBM3 Architecture
Fig 4. Samsung HBM3 architecture

Data-bus architecture of HBM2E and HBM3
Fig 5. Data-bus architecture of HBM2E and HBM3

SK Hynix IEEE paper related to HBM3:

SK Hynix has also published 2 IEEE papers describing the HBM3 memory technological aspect.

IEEE Paper 1 and IEEE Paper 2 of SK Hynix:

IEEE Paper1:

Title: A 192-Gb 12-High 896-GB/s HBM3 DRAM With a TSV Auto-Calibration Scheme and Machine-Learning-Based Layout Optimization|
DOI: 10.1109/ISSCC42614.2022.9731562
Link: https://ieeexplore.ieee.org/document/9731562

IEEE Paper2:

Title: A 192-Gb 12-High 896-GB/s HBM3 DRAM With a TSV Auto-Calibration Scheme and Machine-Learning-Based Layout Optimization
DOI: 10.23919/VLSIC.2019.8778082
Link: https://ieeexplore.ieee.org/document/8778082/

SK Hynix architecture of HBM3 memory system
Fig 6. SK Hynix architecture of HBM3 memory system.

Nvidia IEEE paper related to HBM3:

Nvidia has also published 1 IEEE paper about the HBM3 memory system. The paper describes that Hopper H100 GPU is implementing five HBM memory systems with a total memory bandwidth of over 3TB/s.

IEEE Paper1:

Title: NVIDIA Hopper H100 GPU: Scaling Performance
DOI10.1109/ISSCC42614.2022.9731562
Link: https://ieeexplore.ieee.org/abstract/document/10070122

Nvidia Hopper H100 implementing HBM3 memory system
Fig 7. Nvidia Hopper H100 implementing HBM3 memory system.

TSMC IEEE paper related to HBM3:

TSMC has also published 1 IEEE paper pertaining to the HBM3 memory system. The paper implements integrated de-cap capacitors for suppressing power domain noise and for enhancing the HBM3 signal integrity at a high data rate.

IEEE Paper1:

Title: Heterogeneous and Chiplet Integration Using Organic Interposer (CoWoS-R)
DOI10.1109/ISSCC42614.2022.9731562
Link: https://ieeexplore.ieee.org/document/10019517/

HBM and Chiplet side of a system
Fig 8. HBM and Chiplet side of a system